
RVA23 Profile
Version 0.4, March 21, 2024: This document has been prepared for internal review by RISC-V

International. Changes prior to ratification remain likely.

Table of Contents
Preamble. 1

RVA Profiles Rationale . 2

RVA23 Profiles . 4

RVA23U64 Profile . 4

RVA23U64 Mandatory Base . 4

RVA23U64 Mandatory Extensions . 4

RVA23U64 Optional Extensions . 5

Localized Options . 5

Development Options. 6

Expansion Options . 6

Transitory Options . 6

RVA23U64 Recommendations. 7

RVA23S64 Profile . 7

RVA23S64 Mandatory Base . 7

RVA23S64 Mandatory Extensions . 7

RVA23S64 Optional Extensions. 9

Localized Options . 9

Development Options. 9

Expansion Options . 9

Transitory Options . 9

RVA23S64 Recommendations . 10

Glossary of ISA Extensions . 11

Preamble

This document is in the development state.

Do not use for implementations. Assume everything can change.

1

RVA Profiles Rationale
RISC-V was designed to provide a highly modular and extensible instruction set and includes a
large and growing set of standard extensions, where each standard extension is a bundle of
instruction-set features. This is no different than other industry ISAs that continue to add new ISA
features. Unlike other ISAs, however, RISC-V has a broad set of contributors and implementers, and
also allows users to add their own custom extensions. For some deep embedded markets, highly
customized processor configurations are desirable for efficiency, and all software is compiled,
ported, and/or developed in-house by the same organization for that specific processor
configuration. However, for other markets that expect a substantial fraction of software to be
delivered to end-customers in binary form, compatibility across multiple implementations from
different RISC-V vendors is required.

The RVIA ISA extension ratification process ensures that all processor vendors have agreed to the
specification of a standard extension if present. However, by themselves, the ISA extension
specifications do not guarantee that a certain set of standard extensions will be present in all
implementations.

The primary goal of the RVA profiles is to align processor vendors targeting binary software
markets, so software can rely on the existence of a certain set of ISA features in a particular
generation of RISC-V implementations.

Alignment is not only for compatibility, but also to ensure RISC-V is competitive in these markets.
The binary app markets are also generally those with the most competitive performance
requirements (e.g., mobile, client, server). RVIA cannot mandate the ISA features that a RISC-V
binary software ecosystem should use, as each ecosystem will typically select the lowest-common
denominator they empirically observe in the deployed devices in their target markets. But RVIA can
align hardware vendors to support a common set of features in each generation through the RVA
profiles. Without proactive alignment through RVA profiles, RISC-V will be uncompetitive, as even if
a particular vendor implements a certain feature, if other vendors do not, then binary distributions
will not generally use that feature and all implementations will suffer. While certain features may
be discoverable, and alternate code provided in case of presence/absence of a feature, the added
cost to support such options is only justified for certain limited cases, and binary app markets will
not support a wide range of optional features, particularly for the nascent RISC-V binary app
ecosystems.

To maintain alignment and increase RISC-V competitiveness over time, the mandatory set of
extensions must increase over time in successive generations of RVA profile. (RVA profiles may
eventually have to deprecate previously mandatory instructions, but that is unlikely in the near
future.) Note that the RISC-V ISA will continue to evolve, regardless of whether a given software
ecosystem settles on a certain generation of profile as the baseline for their ecosystem for many
years or even decades. There are many existing binary software ecosystems, which will migrate to
RISC-V and evolve at different rates, and more new ones will doubtless be created over the
hopefully long lifetime of RISC-V. High-performance application processors require considerable
investment, and no single binary app ecosystem can justify the development costs of these
processors, especially for RISC-V in its early stage of adoption.

While the heart of the profile is the set of mandatory extensions, there are several kinds of optional

2

extension that serve important roles in the profile.

The first kind are localized options, whose presence or use necessarily differs along geo-political
and/or jurisdictional boundaries, with crypto being the obvious example. These will always be
optional. At least for crypto, discovery has been found to be perfectly acceptable to handle this
optionality on other architectures, as the use of the extensions is well contained in certain libraries.

The second kind of optional extension is a development option, which represents a new ISA
extension in an early part of its lifecycle but which is intended to become mandatory in a later
generation of the RVA profile. Processor vendors and software toolchain providers will have
varying development schedules, and providing an optional phase in a new extension’s lifecycle
provides some flexibility while maintaining overall alignment, and is particularly appropriate
when hardware or software development for the extension is complex. Denoting an extension as a
development option signals to the community that development should be prioritized for such
extensions as they will become mandatory.

The third kind of optional extension are expansion options, which are those that may have a large
implementation cost but are not always needed in a particular platform, and which can be readily
handled by discovery. These are also intended to remain available as expansion options in future
versions of the profile. Several supervisor-mode extensions fall into this category, e.g., Sv57, which
has a notable PPA impact over Sv48 and is not needed on smaller platforms. Some unprivileged
extensions that may fall into this category are possible future matrix extensions. These have large
implementation costs, and use of matrix instructions can be readily supported with discovery and
alternate math libraries.

The fourth kind of optional extensions are transitory options, where it is not clear if the extension
will change to a mandatory, localized, or expansion option, or be possibly dropped over time.
Cryptography provides some examples where earlier cyphers have been broken and are now
deprecated. RVIA used this mechanism to enable scalar crypto until vector crypto was ready.
Software security features may also be in this category, with examples of deprecated security
features occuring in other architectures. As another example, the recent avalanche of new numeric
datatypes for AI/ML may eventually subside with a few survivors actually being used longer term.
Denoting an option as transitory signals to the community that this extension may be removed in a
future profile, though the time scale may span many years.

Except for the localized options, it could be argued that other three kinds of option could be left out
of profiles. Binary distributions of applications willing to invest in discovery can use an optional
extension, and customers compiling their own applications can take advantage of the feature on a
particular implementation, even when that system is mostly running binary distributions that
ignore the new extension. However, there is value in providing guidance to align hardware
vendors and software developers around what extensions are worth implementing and worth
discovering, by designating only a few important features as profile options and limiting their
granularity.

3

RVA23 Profiles
The RVA23 profiles are intended to align implementations of RISC-V 64-bit application processors to
allow binary software ecosystems to rely on a a large set of guaranteed extensions and a small
number of discoverable coarse-grain options. It is explicitly a non-goal of RVA23 to allow more
hardware implementation flexibility by supporting only a minimal set of features and a large
number of fine-grain extensions.

Only user-mode (RVA23U64) and supervisor-mode (RVA23S64) profiles are specified in this family.

RVA23U64 Profile
The RVA23U64 profile specifies the ISA features available to user-mode execution environments in
64-bit applications processors. This is the most important profile within the application processor
family in terms of the amount of software that targets this profile.

RVA23U64 Mandatory Base

RV64I is the mandatory base ISA for RVA23U64 and is little-endian. As per the unprivileged
architecture specification, the ecall instruction causes a requested trap to the execution
environment.

RVA23U64 Mandatory Extensions

The following mandatory extensions were present in RVA22U64.

• M Integer multiplication and division.

• A Atomic instructions.

• F Single-precision floating-point instructions.

• D Double-precision floating-point instructions.

• C Compressed Instructions.

• Zicsr CSR instructions. These are implied by presence of F.

• Zicntr Base counters and timers.

• Zihpm Hardware performance counters.

• Ziccif Main memory regions with both the cacheability and coherence PMAs must support
instruction fetch, and any instruction fetches of naturally aligned power-of-2 sizes up to
min(ILEN,XLEN) (i.e., 32 bits for RVA23) are atomic.

• Ziccrse Main memory regions with both the cacheability and coherence PMAs must support
RsrvEventual.

• Ziccamoa Main memory regions with both the cacheability and coherence PMAs must support
AMOArithmetic.

• Zicclsm Misaligned loads and stores to main memory regions with both the cacheability and
coherence PMAs must be supported.

4

• Za64rs Reservation sets are contiguous, naturally aligned, and a maximum of 64 bytes.

• Zihintpause Pause instruction.

• Zba Address computation.

• Zbb Basic bit manipulation.

• Zbs Single-bit instructions.

• Zic64b Cache blocks must be 64 bytes in size, naturally aligned in the address space.

• Zicbom Cache-Block Management Operations.

• Zicbop Cache-Block Prefetch Operations.

• Zicboz Cache-Block Zero Operations.

• Zfhmin Half-Precision Floating-point transfer and convert.

• Zkt Data-independent execution time.

The following mandatory extensions are new in RVA23U64:

• V Vector Extension.

 V was optional in RVA22U64.

• Zvfhmin Vector FP16 conversion instructions.

• Zvbb Vector bit-manipulation instructions.

• Zvkt Vector data-independent execution time.

• Zihintntl Non-temporal locality hints.

• Zicond Conditional Zeroing instructions.

• Zimop Maybe Operations.

• Zcmop Compressed Maybe Operations.

• Zcb Additional 16b compressed instructions.

• Zfa Additional scalar FP instructions.

• Zawrs Wait on reservation set.

• Supm Pointer masking, with the execution environment providing a means to select PMLEN=0
and PMLEN=7 at minimum.

RVA23U64 Optional Extensions

RVA23U64 has eleven profile options (Zvkng, Zvksg, Zacas, Zvbc, Zfh, Zbc, Zvfh, Zfbfmin, Zvfbfmin,
Zvfbfwma, Zama16b).

Localized Options

The following localized options are new in RVA23U64:

• Zvkng Vector Crypto NIST Algorithms including GHASH.

5

• Zvksg Vector Crypto ShangMi Algorithms including GHASH.

The scalar crypto extensions Zkn and Zks that were options in RVA22 are not
options in RVA23. The goal is for both hardware and software vendors to move to
use vector crypto, as vectors are now mandatory and vector crypto is substantially
faster than scalar crypto.

We have included only the Zvkng/Zvksg options with GHASH to standardize on a
higher performance crypto alternative. Zvbc is listed as a development option for
use in other algorithms, and will become mandatory. Scalar Zbc is now listed as an
expansion option, i.e., it will probably not become mandatory.

Development Options

The following are new development options intended to become mandatory in RVA24U64:

• Zabha Byte and Halfword Atomic Memory Operations

• Zacas Compare-and-swap

• Ziccamoc Main memory regions with both the cacheability and coherence PMAs must provide
AMOCASQ level PMA support.

• Zvbc Vector carryless multiply.

• Zama16b Misaligned loads, stores, and AMOs to main memory regions that do not cross a
naturally aligned 16-byte boundary are atomic.

Expansion Options

The following expansion options were also present in RVA22U64:

• Zfh Scalar Half-Precision Floating-Point (FP16).

The following are new expansion options in RVA23U64:

• Zbc Scalar carryless multiply.

• Zvfh Vector half-precision floating-point (FP16).

• Zfbfmin Scalar BF16 FP conversions.

• Zvfbfmin Vector BF16 FP conversions.

• Zvfbfwma Vector BF16 widening mul-add.

Transitory Options

There are no transitory options in RVA23U64.

Scalar crypto is no longer an option in RVA23U64, though the Zbc extension has
now been exposed as an expansion option.

6

RVA23U64 Recommendations

Implementations are strongly recommended to raise illegal-instruction exceptions on attempts to
execute unimplemented opcodes.

RVA23S64 Profile
The RVA23S64 profile specifies the ISA features available to a supervisor-mode execution
environment in 64-bit applications processors. RVA23S64 is based on privileged architecture
version 1.13.

 Priv 1.13 is still being defined.

RVA23S64 Mandatory Base

RV64I is the mandatory base ISA for RVA23S64 and is little-endian. The ecall instruction operates as
per the unprivileged architecture specification. An ecall in user mode causes a contained trap to
supervisor mode. An ecall in supervisor mode causes a requested trap to the execution
environment.

RVA23S64 Mandatory Extensions

The following unprivileged extensions are mandatory:

• The RVA23S64 mandatory unprivileged extensions include all the mandatory unprivileged
extensions in RVA23U64.

• Zifencei Instruction-Fetch Fence.

Zifencei is mandated as it is the only standard way to support instruction-cache
coherence in RVA23 application processors. A new instruction-cache coherence
mechanism is under development (tentatively named Zjid) which might be added
as an option in the future.

The following privileged extensions are mandatory:

• Ss1p13 Supervisor Architecture version 1.13.

 Ss1p13 supersedes Ss1p12 but is not yet ratified.

The following privileged extensions were also mandatory in RVA22S64:

• Svbare The satp mode Bare must be supported.

• Sv39 Page-Based 39-bit Virtual-Memory System.

• Svade Page-fault exceptions are raised when a page is accessed when A bit is clear, or written
when D bit is clear.

• Ssccptr Main memory regions with both the cacheability and coherence PMAs must support
hardware page-table reads.

7

• Sstvecd stvec.MODE must be capable of holding the value 0 (Direct). When stvec.MODE=Direct,
stvec.BASE must be capable of holding any valid four-byte-aligned address.

• Sstvala stval must be written with the faulting virtual address for load, store, and instruction
page-fault, access-fault, and misaligned exceptions, and for breakpoint exceptions other than
those caused by execution of the EBREAK or C.EBREAK instructions. For illegal-instruction
exceptions, stval must be written with the faulting instruction.

• Sscounterenw For any hpmcounter that is not read-only zero, the corresponding bit in
scounteren must be writable.

• Svpbmt Page-Based Memory Types

• Svinval Fine-Grained Address-Translation Cache Invalidation

The following are new mandatory extensions:

• Svnapot NAPOT Translation Contiguity

 Svnapot was optional in RVA22.

• Sstc supervisor-mode timer interrupts.

 Sstc was optional in RVA22.

• Sscofpmf Count Overflow and Mode-Based Filtering.

• Ssnpm Pointer masking, with senvcfg.PME and henvcfg.PME supporting, at minimum, settings
PMLEN=0 and PMLEN=7.

• Ssu64xl sstatus.UXL must be capable of holding the value 2 (i.e., UXLEN=64 must be supported).

 Ssu64xl was optional in RVA22.

• H The hypervisor extension.

 The hypervisor was optional in RVA22.

The following extensions were required when the hypervisor was implemented in
RVA22.

• Ssstateen Supervisor-mode view of the state-enable extension. The supervisor-mode
(sstateen0-3) and hypervisor-mode (hstateen0-3) state-enable registers must be provided.

• Shcounterenw For any hpmcounter that is not read-only zero, the corresponding bit in
hcounteren must be writable.

• Shvstvala vstval must be written in all cases described above for stval.

• Shtvala htval must be written with the faulting guest physical address in all circumstances
permitted by the ISA.

• Shvstvecd vstvec.MODE must be capable of holding the value 0 (Direct). When
vstvec.MODE=Direct, vstvec.BASE must be capable of holding any valid four-byte-aligned address.

8

• Shvsatpa All translation modes supported in satp must be supported in vsatp.

• Shgatpa For each supported virtual memory scheme SvNN supported in satp, the
corresponding hgatp SvNNx4 mode must be supported. The hgatp mode Bare must also be
supported.

RVA23S64 Optional Extensions

RVA23S64 has ten unprivileged options (Zvkng, Zvksg, Zacas, Zvbc, Zfh, Zbc, Zvfh, Zfbfmin,
Zvfbfmin, Zvfbfwma) from RVA23U64, and seven privileged options (Sv48, Sv57, Svadu, Zkr, Sdext,
Ssstrict, Svvptc).

Localized Options

There are no privileged localized options in RVA23S64.

Development Options

There are no privileged development options in RVA23S64.

Expansion Options

The following privileged expansion options were present in RVA22S64:

• Sv48 Page-Based 48-bit Virtual-Memory System.

• Sv57 Page-Based 57-bit Virtual-Memory System.

• Zkr Entropy CSR.

The following are new privileged expansion options in RVA23S64

• Svadu Hardware A/D bit updates.

• Sdext Debug triggers

• Ssstrict No non-conforming extensions are present. Attempts to execute unimplemented
opcodes or access unimplemented CSRs in the standard or reserved encoding spaces raises an
illegal instruction exception that results in a contained trap to the supervisor-mode trap
handler.

 Ssstrict does not prescribe behavior for the custom encoding spaces or CSRs.

• Svvptc Transitions from invalid to valid PTEs will be visible in bounded time without an
explicit SFENCE.

• Sspm Supervisor-mode pointer masking, with the supervisor execution environment providing
a means to select PMLEN=0 and PMLEN=7 at minimum.

Transitory Options

There are no privileged transitory options in RVA23S64.

9

RVA23S64 Recommendations

• Implementations are strongly recommended to raise illegal-instruction exceptions when
attempting to execute unimplemented opcodes or access unimplemented CSRs.

10

Glossary of ISA Extensions
The following unprivileged ISA extensions are defined in Volume I of the RISC-V Instruction Set
Manual.

• M Extension for Integer Multiplication and Division

• A Extension for Atomic Memory Operations

• F Extension for Single-Precision Floating-Point

• D Extension for Double-Precision Floating-Point

• Q Extension for Quad-Precision Floating-Point

• C Extension for Compressed Instructions

• Zifencei Instruction-Fetch Synchronization Extension

• Zicsr Extension for Control and Status Register Access

• Zicntr Extension for Basic Performance Counters

• Zihpm Extension for Hardware Performance Counters

• Zihintpause Pause Hint Extension

• Zfh Extension for Half-Precision Floating-Point

• Zfhmin Minimal Extension for Half-Precision Floating-Point

• Zfinx Extension for Single-Precision Floating-Point in x-registers

• Zdinx Extension for Double-Precision Floating-Point in x-registers

• Zhinx Extension for Half-Precision Floating-Point in x-registers

• Zhinxmin Minimal Extension for Half-Precision Floating-Point in x-registers

The following privileged ISA extensions are defined in Volume II of the RISC-V Instruction Set
Manual.

• Sv32 Page-based Virtual Memory Extension, 32-bit

• Sv39 Page-based Virtual Memory Extension, 39-bit

• Sv48 Page-based Virtual Memory Extension, 48-bit

• Sv57 Page-based Virtual Memory Extension, 57-bit

• Svpbmt, Page-Based Memory Types

• Svnapot, NAPOT Translation Contiguity

• Svinval, Fine-Grained Address-Translation Cache Invalidation

• Hypervisor Extension

• Sm1p11, Machine Architecture v1.11

• Sm1p12, Machine Architecture v1.12

• Ss1p11, Supervisor Architecture v1.11

11

https://github.com/riscv/riscv-isa-manual
https://github.com/riscv/riscv-isa-manual
https://github.com/riscv/riscv-isa-manual
https://github.com/riscv/riscv-isa-manual

• Ss1p12, Supervisor Architecture v1.12

• Ss1p13, Supervisor Architecture v1.13

The following extensions have not yet been incorporated into the RISC-V Instruction Set Manual;
the hyperlinks lead to their separate specifications.

• Zba Address Computation Extension

• Zbb Bit Manipulation Extension

• Zbc Carryless Multiplication Extension

• Zbs Single-Bit Manipulation Extension

• Zbkb Extension for Bit Manipulation for Cryptography

• Zbkc Extension for Carryless Multiplication for Cryptography

• Zbkx Crossbar Permutation Extension

• Zk Standard Scalar Cryptography Extension

• Zkn NIST Cryptography Extension

• Zknd AES Decryption Extension

• Zkne AES Encryption Extension

• Zknh SHA2 Hashing Extension

• Zkr Entropy Source Extension

• Zks ShangMi Cryptography Extension

• Zksed SM4 Block Cypher Extension

• Zksh SM3 Hashing Extension

• Zkt Extension for Data-Independent Execution Latency

• V Extension for Vector Computation

• Zve32x Extension for Embedded Vector Computation (32-bit integer)

• Zve32f Extension for Embedded Vector Computation (32-bit integer, 32-bit FP)

• Zve32d Extension for Embedded Vector Computation (32-bit integer, 64-bit FP)

• Zve64x Extension for Embedded Vector Computation (64-bit integer)

• Zve64f Extension for Embedded Vector Computation (64-bit integer, 32-bit FP)

• Zve64d Extension for Embedded Vector Computation (64-bit integer, 64-bit FP)

• Zicbom Extension for Cache-Block Management

• Zicbop Extension for Cache-Block Prefetching

• Zicboz Extension for Cache-Block Zeroing

• Sstc Extension for Supervisor-mode Timer Interrupts

• Sscofpmf Extension for Count Overflow and Mode-Based Filtering

• Smstateen Extension for State-enable

12

https://github.com/riscv/riscv-bitmanip
https://github.com/riscv/riscv-bitmanip
https://github.com/riscv/riscv-bitmanip
https://github.com/riscv/riscv-bitmanip
https://github.com/riscv/riscv-crypto
https://github.com/riscv/riscv-crypto
https://github.com/riscv/riscv-crypto
https://github.com/riscv/riscv-crypto
https://github.com/riscv/riscv-crypto
https://github.com/riscv/riscv-crypto
https://github.com/riscv/riscv-crypto
https://github.com/riscv/riscv-crypto
https://github.com/riscv/riscv-crypto
https://github.com/riscv/riscv-crypto
https://github.com/riscv/riscv-crypto
https://github.com/riscv/riscv-crypto
https://github.com/riscv/riscv-crypto
https://github.com/riscv/riscv-v-spec
https://github.com/riscv/riscv-v-spec
https://github.com/riscv/riscv-v-spec
https://github.com/riscv/riscv-v-spec
https://github.com/riscv/riscv-v-spec
https://github.com/riscv/riscv-v-spec
https://github.com/riscv/riscv-v-spec
https://github.com/riscv/riscv-CMOs
https://github.com/riscv/riscv-CMOs
https://github.com/riscv/riscv-CMOs
https://github.com/riscv/riscv-time-compare
https://github.com/riscv/riscv-count-overflow
https://github.com/riscv/riscv-state-enable

• Svvptc Eliding Memory-management Fences on setting PTE valid

• Zacas Extension for Atomic Compare-and-Swap (CAS) instructions

• Zabha Extension for Byte and Halfword Atomic Memory Operations

• Ziccif: Main memory supports instruction fetch with atomicity requirement

• Ziccrse: Main memory supports forward progress on LR/SC sequences

• Ziccamoa: Main memory supports all atomics in A

• Ziccamoc Main memory supports atomics in Zacas

• Zicclsm: Main memory supports misaligned loads/stores

• Zama16b: Misaligned loads, stores, and AMOs to main memory regions that do not cross a
naturally aligned 16-byte boundary are atomic.

• Za64rs: Reservation set size of at most 64 bytes

• Za128rs: Reservation set size of at most 128 bytes

• Zic64b: Cache block size isf 64 bytes

• Svbare: Bare mode virtual-memory translation supported

• Svade: Raise exceptions on improper A/D bits

• Ssccptr: Main memory supports page table reads

• Sscounterenw: Support writeable enables for any supported counter

• Sstvecd: stvec supports Direct mode

• Sstvala: stval provides all needed values

• Ssu64xl: UXLEN=64 must be supported

• Ssstateen: Supervisor-mode view of the state-enable extension

• Shcounterenw: Support writeable enables for any supported counter

• Shvstvala: vstval provides all needed values

• Shtvala: htval provides all needed values

• Shvstvecd: vstvec supports Direct mode

• Shvsatpa: vsatp supports all modes supported by satp

• Shgatpa: SvNNx4 mode supported for all modes supported by satp, as well as Bare

13

https://github.com/riscv/riscv-svvptc
https://github.com/riscv/riscv-zacas
https://github.com/riscv/riscv-zabha

	RVA23 Profile
	Table of Contents
	Preamble
	RVA Profiles Rationale
	RVA23 Profiles
	RVA23U64 Profile
	RVA23U64 Mandatory Base
	RVA23U64 Mandatory Extensions
	RVA23U64 Optional Extensions
	Localized Options
	Development Options
	Expansion Options
	Transitory Options

	RVA23U64 Recommendations

	RVA23S64 Profile
	RVA23S64 Mandatory Base
	RVA23S64 Mandatory Extensions
	RVA23S64 Optional Extensions
	Localized Options
	Development Options
	Expansion Options
	Transitory Options

	RVA23S64 Recommendations

	Glossary of ISA Extensions

